Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2264174

ABSTRACT

Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being developed world over. We investigated the possibility of producing artificial antibodies from the formalin fixation and paraffin-embedding (FFPE) lung lobes of a patient who died by coronavirus disease 2019 (COVID-19). The B-cell receptors repertoire in the lung tissue where SARS-CoV-2 was detected were considered to have highly sensitive virus-neutralizing activity, and artificial antibodies were produced by combining the most frequently detected heavy and light chains. Some neutralizing effects against the SARS-CoV-2 were observed, and mixing two different artificial antibodies had a higher tendency to suppress the virus. The neutralizing effects were similar to the immunoglobulin G obtained from healthy donors who had received a COVID-19 mRNA vaccine. Therefore, the use of FFPE lung tissue, which preserves the condition of direct virus sensitization, to generate artificial antibodies may be useful against future unknown infectious diseases.

2.
Front Immunol ; 14: 1034978, 2023.
Article in English | MEDLINE | ID: covidwho-2264175

ABSTRACT

Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being developed world over. We investigated the possibility of producing artificial antibodies from the formalin fixation and paraffin-embedding (FFPE) lung lobes of a patient who died by coronavirus disease 2019 (COVID-19). The B-cell receptors repertoire in the lung tissue where SARS-CoV-2 was detected were considered to have highly sensitive virus-neutralizing activity, and artificial antibodies were produced by combining the most frequently detected heavy and light chains. Some neutralizing effects against the SARS-CoV-2 were observed, and mixing two different artificial antibodies had a higher tendency to suppress the virus. The neutralizing effects were similar to the immunoglobulin G obtained from healthy donors who had received a COVID-19 mRNA vaccine. Therefore, the use of FFPE lung tissue, which preserves the condition of direct virus sensitization, to generate artificial antibodies may be useful against future unknown infectious diseases.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Autopsy , Antibodies, Neutralizing , Formaldehyde , Paraffin Embedding , Receptors, Antigen, B-Cell
3.
Front Microbiol ; 13: 967019, 2022.
Article in English | MEDLINE | ID: covidwho-2215337

ABSTRACT

As long as the coronavirus disease-2019 (COVID-19) pandemic continues, new variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with altered antigenicity will emerge. The development of vaccines that elicit robust, broad, and durable protection against SARS-CoV-2 variants is urgently required. We have developed a vaccine consisting of the attenuated vaccinia virus Dairen-I (DIs) strain platform carrying the SARS-CoV-2 S gene (rDIs-S). rDIs-S induced neutralizing antibody and T-lymphocyte responses in cynomolgus macaques and human angiotensin-converting enzyme 2 (hACE2) transgenic mice, and the mouse model showed broad protection against SARS-CoV-2 isolates ranging from the early-pandemic strain (WK-521) to the recent Omicron BA.1 variant (TY38-873). Using a tandem mass tag (TMT)-based quantitative proteomic analysis of lung homogenates from hACE2 transgenic mice, we found that, among mice subjected to challenge infection with WK-521, vaccination with rDIs-S prevented protein expression related to the severe pathogenic effects of SARS-CoV-2 infection (tissue destruction, inflammation, coagulation, fibrosis, and angiogenesis) and restored protein expression related to immune responses (antigen presentation and cellular response to stress). Furthermore, long-term studies in mice showed that vaccination with rDIs-S maintains S protein-specific antibody titers for at least 6 months after a first vaccination. Thus, rDIs-S appears to provide broad and durable protective immunity against SARS-CoV-2, including current variants such as Omicron BA.1 and possibly future variants.

4.
J Infect Chemother ; 29(3): 339-346, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2165563

ABSTRACT

BACKGROUND: Booster vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being promoted worldwide to counter the coronavirus disease 2019 (COVID-19) pandemic. In this study, we analyzed the longitudinal effect of the third BNT162b2 mRNA vaccination on antibody responses in healthcare workers. Additionally, antibody responses induced by the fourth vaccination were analyzed. METHODS: The levels of anti-spike (S) IgG and neutralizing antibody against SARS-CoV-2 were measured at 7 months after the second vaccination (n = 1138), and at 4 (n = 701) and 7 (n = 417) months after the third vaccination using an iFlash 3000 chemiluminescence immunoassay analyzer. Among the 417 participants surveyed at 7 months after the third vaccination, 40 had received the fourth vaccination. A multiple linear regression analysis was performed to clarify which factors were associated with the anti-S IgG and neutralizing antibody. Variables assessed included sex, age, number of days after the second or third vaccination, diagnostic history of COVID-19, and anti-nucleocapsid (N) IgG level. RESULTS: At 7 months after the third vaccination, antibody responses were significantly higher than those at the same time after the second vaccination. Unlike the second vaccination, age had no effect on the antibody responses induced by the third vaccination. Furthermore, the fourth vaccination resulted in a further increase in antibody responses. The multiple linear regression analysis identified anti-N IgG level, presumably associated with infection, as a factor associated with antibody responses. CONCLUSIONS: Our findings showed that BNT162b2 booster vaccinations increased and sustained the antibody responses against SARS-CoV-2.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Japan , Tokyo , Antibody Formation , COVID-19/prevention & control , SARS-CoV-2/genetics , Health Personnel , Antibodies, Neutralizing , RNA, Messenger , Vaccination , Immunoglobulin G , Antibodies, Viral
5.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2147343

ABSTRACT

As long as the coronavirus disease-2019 (COVID-19) pandemic continues, new variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with altered antigenicity will emerge. The development of vaccines that elicit robust, broad, and durable protection against SARS-CoV-2 variants is urgently required. We have developed a vaccine consisting of the attenuated vaccinia virus Dairen-I (DIs) strain platform carrying the SARS-CoV-2  S gene (rDIs-S). rDIs-S induced neutralizing antibody and T-lymphocyte responses in cynomolgus macaques and human angiotensin-converting enzyme 2 (hACE2) transgenic mice, and the mouse model showed broad protection against SARS-CoV-2 isolates ranging from the early-pandemic strain (WK-521) to the recent Omicron BA.1 variant (TY38-873). Using a tandem mass tag (TMT)-based quantitative proteomic analysis of lung homogenates from hACE2 transgenic mice, we found that, among mice subjected to challenge infection with WK-521, vaccination with rDIs-S prevented protein expression related to the severe pathogenic effects of SARS-CoV-2 infection (tissue destruction, inflammation, coagulation, fibrosis, and angiogenesis) and restored protein expression related to immune responses (antigen presentation and cellular response to stress). Furthermore, long-term studies in mice showed that vaccination with rDIs-S maintains S protein-specific antibody titers for at least 6 months after a first vaccination. Thus, rDIs-S appears to provide broad and durable protective immunity against SARS-CoV-2, including current variants such as Omicron BA.1 and possibly future variants.

6.
J Epidemiol ; 32(2): 105-111, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1666900

ABSTRACT

BACKGROUND: Tokyo, the capital of Japan, is a densely populated city of >13 million people, so the population is at high risk of epidemic severe acute respiratory coronavirus 2 (SARS-CoV-2) infection. A serologic survey of anti-SARS-CoV-2 IgG would provide valuable data for assessing the city's SARS-CoV-2 infection status. Therefore, this cross-sectional study estimated the anti-SARS-CoV-2 IgG seroprevalence in Tokyo. METHODS: Leftover serum of 23,234 hospital visitors was tested for antibodies against SARS-CoV-2 using an iFlash 3000 chemiluminescence immunoassay analyzer (Shenzhen YHLO Biotech, Shenzhen, China) with an iFlash-SARS-CoV-2 IgG kit (YHLO) and iFlash-SARS-CoV-2 IgG-S1 kit (YHLO). Serum samples with a positive result (≥10 AU/mL) in either of these assays were considered seropositive for anti-SARS-CoV-2 IgG. Participants were randomly selected from patients visiting 14 Tokyo hospitals between September 1, 2020 and March 31, 2021. No participants were diagnosed with coronavirus disease 2019 (COVID-19), and none exhibited COVID-19-related symptoms at the time of blood collection. RESULTS: The overall anti-SARS-CoV-2 IgG seroprevalence among all participants was 1.83% (95% confidence interval [CI], 1.66-2.01%). The seroprevalence in March 2021, the most recent month of this study, was 2.70% (95% CI, 2.16-3.34%). After adjusting for population age, sex, and region, the estimated seroprevalence in Tokyo was 3.40%, indicating that 470,778 individuals had a history of SARS-CoV-2 infection. CONCLUSIONS: The estimated number of individuals in Tokyo with a history of SARS-CoV-2 infection was 3.9-fold higher than the number of confirmed cases. Our study enhances understanding of the SARS-CoV-2 epidemic in Tokyo.


Subject(s)
COVID-19 , Antibodies, Viral , Cross-Sectional Studies , Hospitals , Humans , Immunoglobulin G , SARS-CoV-2 , Seroepidemiologic Studies , Tokyo/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL